Verschiedene Typen von Exponentialgleichungen lösen

Im Folgenden wird gezeigt, wie verschiedene Typen von Exponentialgleichungen gelöst werden können. Solche Gleichungen können im Zusammenhang mit der Berechnung von Nullstellen oder Extremstellen/Wendestellen bei Exponentialfunktionen auftreten.

Beispiel 1: $4e^{2x} = 16$

$$4e^{2x} = 16$$
 | :4 (es wird erst e^{2x} isoliert)
 $e^{2x} = 4$ | In()
 $2x = In(4)$ | :2

$$x = \ln(4)/2$$

Bemerkungen:

- 1) Wenn hier $e^x = -10$ gestanden hätte, gäbe es keine Lösung (ln(a) existiert im Reellen nur für a > 0). e^x ist für reelle x immer positiv und somit gibt es kein reelles x, so dass z.B. $e^x = -10$ gilt. Damit hat $e^x + 10 = 0$ keine Lösung, aber $-e^x + 10 = 0$ ($\Leftrightarrow -e^x = -10 \Leftrightarrow e^x = 10$).
- 2) Falls es möglich ist, versucht man immer e^{...} zu isolieren.

Beispiel 2: $4e^{2x} - e^{5x} = 0$

$$4e^{2x} - e^{5x} = 0$$
 | $+e^{5x}$
 $4e^{2x} = e^{5x}$ | $:e^{2x}$ ($e^a/e^b = e^{a-b}$, womit $e^{5x}/e^{2x} = e^{3x}$)
 $4 = e^{3x}$ | In()
In(4) = 3x | :3

$$x = \ln(4)/3$$

Bemerkung:

Im Beispiel 2 könnte man auch ausklammern:

$$4e^{2x} - e^{5x} = 0$$

$$e^{2x} \cdot \left(4 \cdot \frac{e^{2x}}{e^{2x}} - \frac{e^{5x}}{e^{2x}}\right) = 0$$

$$e^{2x} \cdot \left(4 - e^{3x}\right) = 0$$

Also ist
$$e^{2x} = 0$$
 oder $4 - e^{3x} = 0$.

 $e^{2x} = 0$ hat keine Lösung!

$$4 - e^{3x} = 0 + e^{3x}$$

 $4 = e^{3x} | ln()$
 $ln(4) = 3x | :3$

$$x = \ln(4)/3$$

Beispiel 3: $(2x-5) e^{-4x} = 0$

$$(2x-5) e^{-4x} = 0$$

$$2x - 5 = 0$$
 oder $e^{-4x} = 0$

e^{-4x} hat keine Nullstelle.

$$2x - 5 = 0$$

$$x = 2,5$$

Beispiel 4: $e^{2x} - 5e^x + 4 = 0$

$$e^{2x} - 5e^{x} + 4 = 0$$

Dies ist ein Fall für eine Substitution:

|+5

Da $(e^x)^2 = e^{2x}$ gilt (denn $(a^n)^m = a^{nm}$), kann man

$$z = e^{x} \qquad (*)$$

substituiert, womit $e^{2x} = z^2$ ist.

Damit erhalten wir:

$$z^2 - 5z + 4 = 0$$

Hier können wir einfach die p – q – Formel anwenden:

$$z_{1/2} = \frac{5}{2} \pm \sqrt{\frac{25}{4} - 4}$$

$$z_{1/2} = \frac{5}{2} \pm \frac{3}{2}$$

$$z_1 = 4$$

$$z_2 = 1$$

Nun muss zurücksubstituiert werden. Dazu setzen wir in die Gleichung (*), die wir beim Substituieren verwendet haben, für z die Werte z_1 und z_2 ein oder wir könnten auch direkt die Zurücksubstitution mit $x = \ln(z)$ durchführen.

$$z = e^{x}$$

$$4 = e^{x} | ln()$$

$$\Rightarrow x_1 = \ln(4)$$

Aus $1 = e^x$ ergibt sich dann $x_2 = \ln(1) = 0$.

Wir haben als zwei Lösungen für x gefunden: $x_1 = ln(4)$ und $x_2 = 0$

Bemerkungen:

1) Allgemein gilt $z = e^x \Leftrightarrow x = \ln(z)$ für positive z. Damit können über $x_{1/2} = \ln(z_{1/2})$ die beiden Lösungen für x (d.h. x_1 und x_2) direkt mit z_1 und z_2 bestimmt werden, wenn die Werte für z beide positiv sind. Sind beide nicht positiv (also negativ oder gleich 0), so gibt es keine Lösung für die Originalgleichung bezüglich x. Dies ist beispielsweise bei $z_1 = 0$ und $z_2 = -4$ (was sich bei der Gleichung $e^{2x} + 4e^x = 0$ ergeben würde) der Fall oder bei $z_1 = -1$ und $z_2 = -3$ (was sich mit der Gleichung $e^{2x} + 4e^x + 3 = 0$ ergeben würde). Wenn nur genau ein Wert für z positiv wäre, gäbe es bei der Originalgleichung nur eine Lösung, was beispielsweise bei der Gleichung $e^{2x} - 5e^x - 24 = 0$ der Fall wär, wo sich $z_1 = 8$ und $z_2 = -3$ ergibt. Hier wäre dann nur $x = \ln(8)$ eine Lösung.

2) Substituiert könnte man auch im Fall

$$e^{4x} - 5e^{2x} + 4 = 0$$
 (hier $z = e^{2x}$, womit $z^2 = e^{4x}$ ist)

oder bei

$$e^{6x} - 5e^{3x} + 4 = 0$$
 (hier $z = e^{3x}$, womit $z^2 = e^{6x}$ ist).

Dies geht allgemein bei Gleichungen des Typs $e^{2a \cdot x} + p \cdot e^{a \cdot x} + q = 0$ mit $a \neq 0$.

3) Die Gleichung aus Bespiel 4 hätte auch so aussehen können:

$$e^{x} + 4e^{-x} - 5 = 0$$

Multipliziert man hier mit e^x (wegen $e^a \cdot e^b = e^{a+b}$), so ergibt sich:

$$e^{2x} + 4 - 5e^{x} = 0$$

Beispiel 4:
$$\frac{e^{-2x}-4}{e^{3x}+5}=0$$

$$\frac{e^{-2x} - 4}{e^{3x} + 5} = 0$$

Hier müsste man erst den Definitionsbereich festlegen und die Nullstellen es Nenners ausschließen. $e^{3x}+5=0$ hat aber keine Lösung, womit der Definitionsbereich $\mathbb R$ wäre und jede reelle Zahl als Lösung der oberen Gleichung zulässig wäre.

$$e^{-2x} - 4 = 0 + 4$$

$$e^{-2x} = 4$$
 | In()

$$-2x = In(4)$$
 | : (-2)

$$x = - \ln(4)/2$$

Bemerkung:

Es gibt auch Exponentialgleichungen, die nicht durch einfaches Umformen gelöst werden können, wie beispielsweise die Gleichung $x \cdot e^{2x} - 10 + e^{3x} = 0$. Hier müsste ein nummerischen Verfahren (z.B. das Newton-Verfahren) verwendet werden.